翻訳と辞書
Words near each other
・ Lissa Labiche
・ Lissa Lauria
・ Lissa Muscatine
・ Lissa Vera
・ Lissa'aere
・ Lissac
・ Lissac, Ariège
・ Lissac, Haute-Loire
・ Lissac-et-Mouret
・ Lissac-sur-Couze
・ Lissadell
・ Lissadell House
・ Lissagurraun
・ Lissajous
・ Lissajous curve
Lissajous knot
・ Lissajous orbit
・ Lissamphibia
・ Lissan
・ Lissan GAC
・ Lissan House
・ Lissanthe
・ Lissanthe sapida
・ Lissanthe strigosa
・ Lissauer
・ Lissauer Breccia
・ Lissavruggy
・ Lissay-Lochy
・ Lissazounmè
・ Lisse


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lissajous knot : ウィキペディア英語版
Lissajous knot
In knot theory, a Lissajous knot is a knot defined by parametric equations of the form
:x = \cos(n_x t + \phi_x),\qquad y = \cos(n_y t + \phi_y), \qquad z = \cos(n_z t + \phi_z),
where n_x, n_y, and n_z are integers and the phase shifts \phi_x, \phi_y, and \phi_z may be any real numbers.〔M.G.V. Bogle, J.E. Hearst, V.F.R. Jones, L. Stoilov, "Lissajous knots", Journal of Knot Theory and Its Ramifications, 3(2), 1994, 121–140.〕
The projection of a Lissajous knot onto any of the three coordinate planes is a Lissajous curve, and many of the properties of these knots are closely related to properties of Lissajous curves.
Replacing the cosine function in the parametrization by a triangle wave transforms every Lissajous
knot isotopically into a billiard curve inside a cube, the simplest case of so-called ''billiard knots''.
Billiard knots can also be studied in other domains, for instance in a cylinder.〔C. Lamm, D. Obermeyer. "Billiard knots in a cylinder", Journal of Knot Theory and Its Ramifications, 8(3), 1999, 353–366.〕
== Form ==
Because a knot cannot be self-intersecting, the three integers n_x, n_y, n_z must be pairwise relatively prime, and none of the quantities
:n_x \phi_y - n_y \phi_x,\quad n_y \phi_z - n_z \phi_y,\quad n_z \phi_x - n_x \phi_z
may be an integer multiple of pi. Moreover, by making a substitution of the form t' = t+c, one may assume that any of the three phase shifts \phi_x, \phi_y, \phi_z is equal to zero.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lissajous knot」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.